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LETTER TO THE EDITOR 

Equivalence between Poisson representation and Fock space 
formalism for birth-death processes 

Michel Droztt and Alan McKanetB 
t Isaac Newton InstifUte for Mathematical Sciences, University of Cambridge, Cambridge, 
cB3 om. UK 

Received 9 May 1994 

Abstract. The equivalence between the Poisson representation and the Fock space fo&m, 
both used to derive coarse-gained equations from the master equation for non-equilibrium 
systems, is explicitly demonstrated. 

In statistical mechanics, the dynamics of a system near or at equilibrium can be described at 
different levels. At a microscopic level the dynamics is given by a master equation governing 
the time evolution of the probability that a microscopic state is realized at a given time t .  
At a coarsed-gained level, the dynamics is described by one (or a few coupled) Langevin 
equations. When the system evolves towards an equilibrium state, the noise is usually 
additive and white, and in this case an alternative description exists in terms of a Fokker- 
Planck equation [l]. In many situations, a mean-fieId like approximation, neglecting the 
fluctuations, already gives a cone& description of most of the properties of the system. 
However, this is obviously not true in the vicinity of a phase transition [Z]. 

For non-equilibrium systems, the situation is often more subtle. For example, the 
system can evolve towards an empty state (for which no particles are left in the system). 
One can then expect that, in the long time regime, the fluctuations will govern the 
dynamics. Examples are provided by reaction-diffusion systems, of which the simplest 
is the annihilation model in which A particles diffuse in a gel and annihilate [3] according 
to: 

A + A + 0 .  (1) 

For a d-dimensional system and homogeneous initial conditions, na(t) ,  the number of 
particles at time t ,  behaves in the long time regime as na(f) - t-LL , whereF=min(l,d/2). 
One speaks of anomalous kinetics. Indeed, a simple mean-field description (rate equation) 
predicts 01 = 1 in all dimensions. Similar situations happen in more complicated reactions 
of the type nA + mB -+ C [4]. In this case one can also consider situations in which the 
particles A and B are initially separated in space. Reaction-diffusion fronts are then formed 
with non-trivial dynamical scaling properties [5]. 

To describe these non-equilibrium situations, one has to start at the master equation level 
to keep track of all the fluctuations. However, scaling behaviour usually takes place in the 
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long time regime. It is thus natural to seek a coarse-grained theory which can be analysed 
in the framework of a dynamical renormalization group, for example. It is, however, crucial 
that this coarse-grained theory keeps track of all the important fluctuations contained in the 
system. 

Two different approaches, apparently disconnected one from the other, have been 
proposed in the literature: the Fock space formalism 161 and the Poisson representation 
[7]. The purpose of this note is to show explicitly that, although starting from a different 
point of view, the two above approaches are equivalent. Namely, there is a one to one 
correspondence between the Liouvillians and the field theories of the two methods. 

The generalization to arbitraiy 
dimensions is straightforward, but the notation becomes cumbersome. One considers a 
dynamical process described by the following master equation: 

Let us first consider a zero dimensional system. 

where &(t) is the probability that the system has n particles at time t and w(n' -+ n) is 
the msi t ion  rate from the state with 11' pariicles to the one with n particles. 

In the approach using the Fock space formalism 161, one introduces creation and 
annihilation operators in a way similar to quantum theory. To each macroscopic state 
{&) obe can associate the state IQ) considered as an element of a real vector space or a 
Fock space 7 181: 

where In) is the state with exactly n particles. A useful quantity is the generating function 
defined as: 

where z is a complex number. The derivatives of G(z, t )  generate the factorial moments: 

The definition of a scalar product on the vector space gives it a Hilbert structure. Two 
different scalar products are usually considered [9, lo]. For simplicity we shall restrict 
ourselves to the so-called exclusive scalar product defined as: 

(nlm) = n!6,,. (6) 

One then introduces the annihilation operator a and the creation operator n defined as: 

aln) = nln - 1) (7) 

and 

nln) = In + 1). (9) 
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These operators obey the usual commutations relations: 

[a, a]- = 1 (9) 

and are Hermitian conjugates with respect to the exclusive scalar product. It then follows 
that: 

Finally, the generating function can be written down in this formalism as: 

G(z, f) = (zlW (11) 

where the lz) are the coherent states of Bargmann and Fock [ll]: 

lz) = exp(z*n)IO). (12) 

One can then prove several useful properties: 

(ZIT) =ez(' (13) 

(14) 

alz) = 2'12). (16) 

In this approach the master equation takes the form: 

a,]@) = ~310) (17) 

with the Liouvillian L3 being a polynomial in the creation and annihilatiLn operators and 
can always be written in normal form (all the creation operators are on the left of the 
annihilation operators): 

The exact form of L3, i.e. the values that the constants Cij  take on, will depend on the 
form of the transition rates w(n' + n )  for the model under consideration. Thus one can 
take .either the w or the Liouvillian L3 to define the model. 

From (17) and (18) one can construct a path-integral representation for 

,~(z,,rlzo,O) = (zl expte31zo) (19) 

by inserting (14) into (19) N - 1 times, in the usual way [Ill: 
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where ZN = z and where 6 = t / N .  For small E a typical term may easily be evaluated 

Substituting (21) into (20) and taking the limit N -+ 03 and E -+ 0 with t fixed, gives for 
(20). after some algebra and up to boundary terms: 

where the dot signifies differentiation with respect to time. This is essentially the form 
given in [8] and can be used as the basis for approximation schemes in these systems. 

There is, however, a different method available which starts from a master equation 
such as (2) and leads, also without approximation, to a path-integral representation for the 
process. The method uses the Poisson representation, and was introduced by Gardiner and 
Chaturvedi 171 and developed by Elderfield [121. Specifically one assumes that a state of 
the system realised at time t can be expanded as a superposition of multivariate uncorrelated 
Poissons. One then writes: 

In this formalism the generating function, (4). takes the form: 

G(z, r) = do! exp[(z - I)cu]f(ar, 2 ) .  (24) 

atG(z, t )  = LC"G(z, f )  

! 
If one is ,-iven the evolution equation for G in the form 

(25) 

then by replacing G by its expression (24). and integrating by parts (assuming that f(a. t )  
and some of its derivatives vanish at the boundaries) one obtains a Fokker-Planck-like 
equation for f(01, t )  [1,7]. This equation is not a standard Fokker-Planck equation because 
f(a, t )  does not have to remain positive and thus is not a probability density. Moreover, 
01 is not necessarily real, but can be complex. This Poisson representation leads to simple 
relations between the factorial moments of n and the moments of a. One has: 

nk( f )  = / d a u k f ( c l , t )  = (ax). (26) 

To show the equivalence of the two formalisms, one has first to determine the form of the 
Liouvillian, d ,  defined in (U), which describes the evolution of the generating function, 
G(z, t ) ,  with time. Given the form (18) for L? this is straightfarward 

a m z ,  t )  = ( Z i a m  

. ... . 
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where we have used (15). Now using (13) and (16) one has 

= LGG(z, t )  

where 

One sees the close relationship between LF and LG. To each creation operator R present in 
CF one associates a factor z in L5 and to each annihilation operator a in LF one associates 
the operator aiaz in ~ 9 .  

It is now possible to proceed from (U) as described above to find the evolution equation 
for f (or, t). One finds: 

a,f(or, t )  = rpf(or, t )  (30) 

where 

is the Liouvillian describing the evolution of the quasi-probability density f(2, t). This 
Fokker-Planck-lie equation is exact-no approximation or truncation has been made in 
deriving it frbm the master equation (2). It can be used as the basis for the study of processes 
described by (2). or as the starting point for deriving a path-integral representation in terms 
of the ff variables. To carry out this latter programme, one introduces operators & and $ 
1121 satisfying 

(32) * ^  
[or, p ] -  = i [&, &]- = 0 [@, @I- = 0 

with 

> . a  
aor 

p -1- (33) 

in the @-representation. Then just as thelmaster equation (17) is the Fock-space analogue 
of (25). one can Write an operator analogue of (31): 

a t i f )  = LOW) (34) 

where: 

Introducing lor) and Ip) ,  which are eigenkets of 6 and @ with eigenvalues or and p 
respectively, one can derive a path-integral representation for 

f ( o r ,  t~oro. 0) = (or1 exptL%d (36) 



L472 Letter to the Editor 

in exactly the same way as described in (19) ef seq. One finds the analogous expression to 
(22) to be 

The 'action' in the path-integral (22) and that in (37) are identical as long as the 
identifications 

(Y c) z* ip +3 (z - 1) (38) 

are made. Although it was not obvious a priori that the two actions would be identical, if 
(38) is expressed in the form: 

it becomes very much more plausible, given the conjugate nature of the variables (Y and 
(z - 1) indicated in (24). 

The generalization to d-dimensional systems on a lattice is straightforward 181. At 
each site r of the lattice, one can have n, particles. One starts with a master equation for 
&,+% .....",.... (f), the joint probability to find nj particles at site j (j = 1,2,. . .). 

In the Fock space representation, the basis states of the system are of the form 
InJ = lnl, nz, . . .nr , .  . .). At each site r of the lattice, one associates a pair of creation 
nT and annihilation a, operators satisfying the commutation relations: 

I& nsl- = Jrs. (40) 

The macroscopic state is: 

and the generating function: 

The Liouvillian LF = L(z1, U I ,  . . . , nj, aj, . . .) contains terms which couple the site r and 
its nearest neighbours. Such non-local terms a& needed to describe the diffusion of the 
particles on the lattice. 

In the Poisson representation, one expresses as a multiple integral of the form: 

where g = (a1 , q., . . .). The generating function becomes: 
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One can now see that to show the equivalence of the two formalisms in the general d- 
dimensional case, one can proceed in exactly the same way as for the one-site problem. 
First of all, an analogous procedure to that wried out in (27)-(29) shows that the 
Liouvilliq describing the evolution of Gk, t )  is LG = L(z1, a/az,, . . . , z j ,  3/82,, . . .) 
and hence that governing the evolution of f@, t )  is Lp = L(l - a / a q , q ,  ..., 1 - 
J/acuj, q, . . .). Secondly, the operator analogue of Lp is immediately seen to be Lo = 
L(l + iF1. &I, . . . , 1 + i$j, Gj, . . .). Finally, path-integral representations for the solution 
of the Fokker-Planck equations can be constructed from LF and Lo and shown to be the 
same, if the identification 

cl: * zf ipi ff (2: - 1) (45) 

is made. ’ Once the form of the path-integral has been established, coarse-graining gives 
a field-theoretic description of the process under consideration, allowing all the standard 
machinery of field theory to be used to elucidate the nature of the scaling phenomena seen 
in these systems. 

Let us illustrate the general case by a particular example: the annihilation process 
A + A + 0. Let D be the diffusion constant of the A particles and k the reaction rate. The 
Liouvillian LF is easily found to be: 

where e denotes the nearest neighbour sites of r .  The coarsed grained version of this 
Liouvillian has been studied in [13] in terms of a dynamical renormalization group approach. 
It turns out that this field theory is super-renormalizable; the analysis can be done in arbitrary 
dimension, confirming the anomalous kinetics described in the introduction. 

On the other hand, one can study the problem in terms of the Poisson representation 
and solve the Fokker-Planck equation for f@, t )  [14] or construct the corresponding field 
theory. The operator Lo reads: 

and hence the Lagrmgian of the field theory, after coarse-graining, is (cf (37)): 

L = ddr [ip(dr - DV2u + 2Dk& - Dkp2a21 (48) s 
which is identical to the Lagrangian derived from (46) [13], once the identification discussed 
above is made. 

We have demonstrated the relationship between the two approaches that have been used 
to obtain exact path-integral representations for reaction-diffusion systems directly from the 
master equation. Both of the methods bypass the Langevin equation since for these systems 
the noise is non-trivial, and it is incorrect to put additive noise in ‘by hand’, as some early 
workers did. In the Poisson representation, as originally formulated, it was not possible 
to investigate time-dependent phenomena, and while subsequent work did introduce time 
evolution into the formalism, the Fock space methods developed by Doi, and others, give 
a more direct access to the equal or multi-time correlation functions. 
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